#### Considerations for Implementing the Illinois Learning Standards

for Science (Next Generation Science Standards)



Intended Audience: Teachers, Administrators, Professional Development Coordinators

**Description:** This rubric helps teachers and school districts determine the level of implementation of the Illinois Learning Standards for Science. Based on 23 specific components, this document can be used as a guide to drive the shifts necessary to achieve full implementation of the new science standards adopted statewide in 2014. The tool has been developed in two main categories— Teacher Implementation Components describing what the phases of implementation look like in the classroom and District Implementation Components describing what the phases of implementation should look like at the school/district level. Please note that in this document Illinois Learning Standards for Science refers to the Next Generation Science Standards, as Illinois adopted the NGSS verbatim.

This document includes:

- How to read and use the implementation guide
- Danielson Framework for Teaching
- Classroom Implementation Components
- District Implementation Components
- Classroom and District Full Implementation Condensed Guides

Suggested Use for these Documents:

- to serve as a reflective tool for teachers to determine what classroom and curricular changes need to occur for alignment to the new standards
- to communicate to stakeholders the characteristics of a fully aligned classroom, school or district
- to direct professional learning considerations for teachers and school districts
- to help develop materials for workshops/professional learning by Professional Learning Coordinator

#### **Reading the Implementation Guide**



### Charlotte Danielson's FRAMEWORK FOR TEACHING

| DOMAIN 1: Planning and Preparation                                                                                                                                                                                                             | DOMAIN 2: The Classroom Environment                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1a         Demonstrating Knowledge of Content and Pedagogy           • Content knowledge         • Prerequisite relationships         • Content pedagogy                                                                                       | <ul> <li>2a Creating an Environment of Respect and Rapport</li> <li>Teacher interaction with students</li> <li>Student interaction with students</li> </ul>                                                                                            |
| <ul> <li>1b Demonstrating Knowledge of Students</li> <li>Child development • Learning process • Special needs</li> <li>Student skills, knowledge, and proficiency</li> <li>Interests and cultural heritage</li> </ul>                          | <ul> <li>2b Establishing a Culture for Learning</li> <li>Importance of content</li> <li>Expectations for learning and behavior</li> <li>Student pride in work</li> </ul>                                                                               |
| <ul> <li>1c Setting Instructional Outcomes         <ul> <li>Value, sequence, and alignment</li> <li>Clarity</li> <li>Balance</li> <li>Suitability for diverse learners</li> </ul> </li> <li>1d Demonstrating Knowledge of Resources</li> </ul> | <ul> <li>2c Managing Classroom Procedures         <ul> <li>Instructional groups</li> <li>Transitions</li> <li>Materials and supplies</li> <li>Non-instructional duties</li> <li>Supervision of volunteers and paraprofessionals</li> </ul> </li> </ul> |
| • For classroom • To extend content knowledge • For students     1e Designing Coherent Instruction                                                                                                                                             | 2d Managing Student Behavior<br>• Expectations • Monitoring behavior • Response to misbehavior                                                                                                                                                         |
| <ul> <li>Learning activities</li> <li>Instructional materials and resources</li> <li>Instructional groups</li> <li>Lesson and unit structure</li> </ul>                                                                                        | <ul> <li>2e Organizing Physical Space</li> <li>• Safety and accessibility</li> <li>• Arrangement of furniture and resources</li> </ul>                                                                                                                 |
| <ul> <li>1f Designing Student Assessments</li> <li>Congruence with outcomes</li> <li>Criteria and standards</li> <li>Formative assessments</li> <li>Use for planning</li> </ul>                                                                |                                                                                                                                                                                                                                                        |
| DOMAIN 4: Professional Responsibilities                                                                                                                                                                                                        | DOMAIN 3: Instruction                                                                                                                                                                                                                                  |
| 4a Reflecting on Teaching<br>• Accuracy • Use in future teaching                                                                                                                                                                               | 3a Communicating With Students<br>• Expectations for learning • Directions and procedures                                                                                                                                                              |
| 4b Maintaining Accurate Records<br>• Student completion of assignments                                                                                                                                                                         | <ul> <li>Explanations of content</li> <li>Use of oral and written language</li> <li>Using Questioning and Discussion Techniques</li> </ul>                                                                                                             |
| Student progress in learning • Non-Instructional records     4c Communicating with Families                                                                                                                                                    | Quality of questions      Discussion techniques      Student participation                                                                                                                                                                             |
| <ul> <li>About instructional program</li> <li>About individual students</li> <li>Engagement of families in instructional program</li> </ul>                                                                                                    | 3c         Engaging Students in Learning           • Activities and assignments         • Student groups                                                                                                                                               |
| <ul> <li>4d Participating in a Professional Community</li> <li>• Relationships with colleagues • Participation in school projects</li> <li>• Involvement in culture of professional inquiry</li> <li>• Service to school</li> </ul>            | <ul> <li>Instructional materials and resources</li> <li>Structure and pacing</li> <li>Using Assessment in Instruction         <ul> <li>Assessment criteria</li> <li>Monitoring of student learning</li> </ul> </li> </ul>                              |
| <ul> <li>4e Growing and Developing Professionally</li> <li>• Enhancement of content knowledge and pedagogical skill</li> <li>• Service to the profession</li> </ul>                                                                            | <ul> <li>Feedback to students</li> <li>Student self-assessment and monitoring</li> <li>Demonstrating Flexibility and Responsiveness</li> </ul>                                                                                                         |
| <ul> <li>4f Showing Professionalism</li> <li>Integrity/ethical conduct</li> <li>Service to students</li> <li>Advocacy</li> <li>Decision-making</li> <li>Compliance with school/district regulations</li> </ul>                                 | Lesson adjustment      Response to students      Persistence                                                                                                                                                                                           |

| Illinois Learning Standards for Science: Classroom Implementation Components                                                                                                         |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component and Supporting                                                                                                                                                             | Full Implementation                                                                                                                                                                                                                                     | Partial Implementation                                                                                                                                                                                      | Beginning Implementation                                                                                                                                                                                                                                                                                 |
| Resources                                                                                                                                                                            |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |
| 1. Primary Resources                                                                                                                                                                 | The teacher has read, references                                                                                                                                                                                                                        | The teacher is familiar with the                                                                                                                                                                            | The teacher is aware that these                                                                                                                                                                                                                                                                          |
| Resources:<br>NGSS Source Documentation<br>Framework for K-12 Science<br>Education<br>NGSS Evidence Statements                                                                       | when appropriate, and bases their<br>instruction on the Next Generation<br>Science Standards (NGSS) and<br>appendices, <i>A Framework for K-12</i><br><i>Science Education</i> , Evidence<br>Statements and other associated<br>official documentation. | NGSS standards for their grade<br>level, but not familiar with how<br>their piece fits in the big picture, or<br>does not understand the goals and<br>architecture of the standards.                        | documents are there to support<br>the transition to full<br>implementation, but has not had<br>the opportunity to fully examine<br>their contents.                                                                                                                                                       |
| <ul> <li>Scientific and Engineering<br/>Practices</li> <li>Resources:<br/><u>NGSS Science and Engineering</u><br/><u>Practices</u></li> <li><u>NGSS Nature of Science</u></li> </ul> | Students are using the Scientific and<br>Engineering Practices (SEPs) daily to<br>learn content, solve problems and<br>explain phenomena, and in the<br>process are reflecting the true<br>nature of scientific inquiry.                                | Students engage in the SEPs<br>occasionally during coursework, or<br>may not use them to explain<br>phenomena. Student activity may<br>or may not reflect the true nature<br>of scientific inquiry.         | Students mainly engage in SEPs<br>during laboratory activities. Labs<br>are predetermined by the teacher;<br>everyone follows the same<br>procedure and arrives at the same<br>destination. Labs are not student-<br>led investigations, and do not<br>reflect the true nature of scientific<br>inquiry. |
| 3. Crosscutting Concepts<br>Resources:<br><u>NGSS Cross Cutting Concepts</u>                                                                                                         | Students regularly use the lens of<br>the Crosscutting Concepts (CCCs) to<br>tie together the content and<br>practices of what they are learning,<br>observing and Investigating in the<br>classroom.                                                   | Efforts are made to link to the CCC<br>in most coursework, although<br>some activities lack explicit<br>connections or don't use the CCCs<br>as a unifying strand to tie content<br>and practices together. | CCCs are not explicitly connected to<br>instruction or aren't used to tie<br>together content and practices.                                                                                                                                                                                             |

| Component and Supporting Resources | Full Implementation                    | Partial Implementation              | Beginning Implementation             |
|------------------------------------|----------------------------------------|-------------------------------------|--------------------------------------|
| 4. Disciplinary Core Ideas         | The teacher uses the Illinois          | The teacher uses the Illinois       | The teacher does not use the         |
|                                    | Learning Standards for Science's       | Learning Standards for Science's    | Illinois Learning Standards for      |
|                                    | Disciplinary Core Ideas (DCIs) as a    | DCIs as a guide for developing      | Science's DCIs as a guide for        |
|                                    | guide for developing instruction in    | instruction in most courses, though | developing instruction, and does     |
|                                    | all courses, accommodating DCI         | they may not all be aligned to a    | not accommodate progressions for     |
| Resources:                         | progressions for increasing            | DCI or accommodate progressions     | increasing sophistication of student |
| NGSS Architecture                  | sophistication of student thinking.    | for increasing sophistication of    | thinking.                            |
| NGSS DCI Progressions              |                                        | student thinking.                   |                                      |
|                                    |                                        |                                     |                                      |
| 5. Performance Expectations        | All students are responsible for       | Students are sometimes required     | Performance expectations are used    |
|                                    | showing mastery of all the             | to show mastery of the PEs while    | as a guide for instruction in the    |
|                                    | Performance Expectations (PEs),        | engaging in the SEPs, CCCs, and     | classroom, but not as an assessable  |
|                                    | which form the assessable              | DCIs, or may not show mastery of    | component. By the end of             |
|                                    | component of the standards.            | all performance expectations as     | Instruction, students have not met   |
| Resources:                         | Students are interacting with the      | advised by the "all students all    | the minimum competency of the        |
| NGSS Architecture                  | sers, buis and cous of the             | Standards Criteria of the minors    | the three dimensional attributes of  |
| NGSS PE Bundles                    | of three-dimensional learning          | Learning Standards for Science.     | the performance expectation          |
|                                    | of three-unitensional learning.        | Teachers may structure              |                                      |
|                                    | PEs are used to guide the              | coursework to complete a            |                                      |
|                                    | assessment of what students should     | performance expectation in a        |                                      |
|                                    | be able to do by the end of that       | single lesson, rather than the      |                                      |
|                                    | class or grade level. The educator     | broader context for which they are  |                                      |
|                                    | may take the liberty of using more     | intended.                           |                                      |
|                                    | than one unit to fully address a PE as |                                     |                                      |
|                                    | deemed necessary, or address           |                                     |                                      |
|                                    | multiple PEs in a unit through         |                                     |                                      |
|                                    | "bundling".                            |                                     |                                      |
|                                    |                                        |                                     |                                      |
|                                    |                                        |                                     |                                      |
|                                    |                                        |                                     |                                      |
|                                    |                                        |                                     |                                      |

| Component and Supporting Resources  | Full Implementation                   | Partial Implementation               | Beginning Implementation             |
|-------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| 6. Students engage in               | The science curriculum focuses on     | Science instruction makes use of     | The science curriculum focuses on    |
| explaining phenomena                | engaging students with meaningful     | phenomena to drive learning in       | disconnected topics, with content    |
| and designing solutions.            | phenomena or problems that can be     | some, but not all units. Students    | treated as an end unto itself. No    |
|                                     | explained or solved through the       | do not consistently use SEP's, DCI's | effort is made to place content      |
|                                     | application of SEPs, CCCs, and DCIs.  | and CCC's to explain phenomena,      | within the context of phenomena.     |
|                                     |                                       | or phenomena may be used as a        |                                      |
|                                     | The teacher uses anchoring            | discrepant event without further     |                                      |
| Resources:                          | phenomena as a tool to drive          | explanation.                         |                                      |
| NGSS Phenomena                      | student questioning, and              |                                      |                                      |
|                                     | investigative phenomena to build      |                                      |                                      |
|                                     | evidence for explanation of the       |                                      |                                      |
|                                     | anchoring phenomena.                  |                                      |                                      |
| 7. Equity                           | The teacher ensures that the "all     | The teacher considers student        | The teacher does not consider the    |
|                                     | standards for all students" vision of | background when selecting course     | diverse background of the student    |
|                                     | the NGSS is implemented in their      | sequence and content, but may        | population when planning             |
|                                     | classroom and at the forefront of     | not facilitate the learning of       | instruction, or has no methods for   |
|                                     | curricular decisions.                 | diverse student groups, or may not   | differentiation.                     |
| Resources:                          |                                       | be knowledgeable of effective        |                                      |
| NGSS All Standards for All Students | Course sequence and content are       | differentiation methods.             | The "all standards for all students" |
|                                     | organized with the diversity of       |                                      | vision of the NGSS is unfulfilled.   |
|                                     | student groups in mind, and efforts   | Classes may or may not meet the      |                                      |
|                                     | are made to differentiate instruction | "all standards for all students"     |                                      |
|                                     | to accommodate all students using     | vision of the NGSS.                  |                                      |
|                                     | appropriate researched methods.       |                                      |                                      |
|                                     |                                       | The teacher is inconsistent in their |                                      |
|                                     | The teacher uses three-dimensional    | use of three-dimensional learning    |                                      |
|                                     | learning and engaging phenomena       | and engaging phenomena to            |                                      |
|                                     | creating shared experiences and       | address inequity in their            |                                      |
|                                     | discussions which promote equity in   | classroom.                           |                                      |
|                                     | science education.                    |                                      |                                      |
|                                     |                                       |                                      |                                      |
|                                     |                                       |                                      |                                      |

| Component and Supporting Resources | Full Implementation                  | Partial Implementation             | Beginning Implementation              |
|------------------------------------|--------------------------------------|------------------------------------|---------------------------------------|
| 8. K–12 science education          | The teacher provides learning        | The teacher sometimes provides     | The science learning environment      |
| reflects three-dimensional         | experiences that promote student     | learning experiences that promote  | provides discrete facts and           |
| learning                           | use of SEPs, CCCs, and DCIs with the | student use of SEPs, CCCs, and     | concepts in science disciplines, with |
|                                    | goal that students are actively      | DCIs with the goal that students   | limited application of practices or   |
|                                    | engaged in explaining phenomena      | are actively engaged in explaining | the interconnected nature of the      |
|                                    | or solving problems.                 | phenomena or solving problems.     | disciplines. Where crosscutting       |
|                                    |                                      | The learning experiences may       | themes were included, they were       |
| Resources:                         |                                      | include SEP and DCIs, but lack     | implicit and not noticed or used by   |
| NGSS Three Dimensional Learning    |                                      | explicit connections to CCCs.      | the student.                          |
| 9. Assessment                      | The teacher consistently selects and | The teacher sometimes selects and  | The teacher infrequently selects      |
|                                    | designs assessments that are         | designs assessments that are       | and designs assessments that are      |
|                                    | congruent with how learning occurs   | congruent with how learning        | congruent with how learning           |
|                                    | in the classroom. Students engage in | occurs in the classroom, although  | occurs in the classroom, and          |
|                                    | all three dimensions of science as   | students may not consistently      | students aren't always engaged in     |
| Resources:                         | they demonstrate their level of      | engage in all three dimensions of  | all three dimensions of science as    |
| Developing Assessments for NGSS    | mastery.                             | science as they demonstrate their  | they demonstrate their level of       |
|                                    |                                      | level of mastery.                  | mastery.                              |
|                                    | The teacher consistently provides    |                                    |                                       |
|                                    | constructive feedback based on       | The teacher provides constructive  | The teacher seldom provides           |
|                                    | assessment data to guide students    | feedback based assessment data     | constructive feedback based           |
|                                    | to meet the goals of the PEs.        | to guide students to meet the      | assessment data to guide students     |
|                                    |                                      | goals of the PEs, though not on a  | to meet the goals of the PEs.         |
|                                    |                                      | consistent basis.                  |                                       |
|                                    |                                      |                                    |                                       |
|                                    |                                      |                                    |                                       |
|                                    |                                      |                                    |                                       |
|                                    |                                      |                                    |                                       |
|                                    |                                      |                                    |                                       |
|                                    |                                      |                                    |                                       |
|                                    |                                      |                                    |                                       |
|                                    |                                      |                                    |                                       |

| Component and Supporting Resources | Full Implementation                   | Partial Implementation             | Beginning Implementation             |
|------------------------------------|---------------------------------------|------------------------------------|--------------------------------------|
| 10. Instructional Materials        | The teacher has reviewed alignment    | The teacher has reviewed           | The teacher has not reviewed their   |
|                                    | of all coursework material to the     | coursework material for alignment  | own coursework material, nor have    |
|                                    | appropriate DCI progression of the    | and may have integrated some       | they sought out or implemented       |
|                                    | Illinois Learning Standards for       | aligned materials from reputable   | aligned materials from reputable     |
|                                    | Science, consistently evaluates their | sources, but hasn't fully modified | sources. The teacher hasn't utilized |
| Resources:                         | own materials for alignment and has   | their own materials and hasn't     | the PEEC and/or NGSS EQuIP Rubric    |
| EOuIP Rubric                       | sought out aligned materials from     | consistently utilized the PEEC     | to evaluate new or current           |
| PEEC Document                      | reputable sources.                    | and/or NGSS EQuIP Rubric to        | instructional materials for          |
|                                    |                                       | evaluate new or current            | alignment the Illinois Learning      |
|                                    | In addition, the teacher has utilized | instructional materials for        | Standards for Science.               |
|                                    | the PEEC and/or NGSS EQuIP Rubric     | alignment the Illinois Learning    |                                      |
|                                    | to evaluate new or current            | Standards for Science.             |                                      |
|                                    | instructional materials for alignment |                                    |                                      |
|                                    | the Illinois Learning Standards for   |                                    |                                      |
|                                    | Science.                              |                                    |                                      |
| 11. The NGSS incorporate           | The science learning environment      | Efforts have been made to          | The science learning environment     |
| engineering design and             | incorporates learning experiences     | integrate engineering design and   | includes engineering design and      |
| the nature of science as           | that include the DCIs of engineering  | the nature of science into         | the nature of science as             |
| SEPS and CCCS.                     | of both angineering and the nature    | the content                        | from science loorning (o.g. design   |
|                                    | of science, with both included in     | the content.                       | nroin science learning (e.g., design |
|                                    | of science, with both included in     | Some activities still present them | projects that do not require science |
|                                    | assessments.                          | as stand along concents            | successfully) with poither included  |
|                                    | Both engineering design and the       | as stand-alone concepts.           | in assessments                       |
| Resources:                         | nature of science are taught in an    |                                    | 11 03565511161105.                   |
| NGSS Engineering Design            | integrated manner with science        |                                    |                                      |
| NGSS Nature of Science             | disciplines                           |                                    |                                      |
|                                    |                                       |                                    |                                      |
|                                    |                                       |                                    |                                      |
|                                    |                                       |                                    |                                      |
|                                    |                                       |                                    |                                      |
|                                    |                                       |                                    |                                      |

| Component and Supporting Resources | Full Implementation                   | Partial Implementation               | Beginning Implementation               |
|------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------|
| 12. College, Career, and           | Lessons and units are designed to     | Instruction is designed to reinforce | Few connections between science        |
| Citizenship Preparation            | develop scientific literacy in        | scientific literacy outside the      | and college, occupations and           |
|                                    | students, explicitly connecting       | classroom, but it does not occur in  | citizenship are made in instruction.   |
|                                    | science instruction to college and    | every unit, nor does it always       | The application of scientific literacy |
|                                    | career readiness. The curriculum      | explicitly connect to college and    | outside the classroom is not           |
|                                    | prepares students for post-           | career readiness. Courses and their  | reinforced.                            |
| Resources:                         | secondary education and careers       | content do not fully prepare         |                                        |
| NGSS College and Career            | through a combination of rigorous     | students for post-secondary          |                                        |
| <u>Readiness</u>                   | content and application of practices. | education or careers.                |                                        |
| 13. Connections to English         | The curriculum provides science       | Attempts are made at connecting      | The curriculum provides siloed         |
| Language Arts and                  | learning experiences for students     | science to other disciplines         | science knowledge that students        |
| Mathematics                        | that explicitly connect to            | explicitly, but not in every unit or | learn in isolation from reading,       |
|                                    | mathematics and ELA learning in       | activity.                            | writing, and arithmetic.               |
|                                    | meaningful and substantive ways       |                                      |                                        |
|                                    | and that provide broad and deep       |                                      |                                        |
| Resources:                         | conceptual understanding in all       |                                      |                                        |
| NGSS Architecture                  | three subject areas.                  |                                      |                                        |
| 14. Vertical Articulation: SEPs,   | The science curriculum provides       | The science curriculum provides      | The science curriculum lacks           |
| DCIs, and CCCs build               | learning experiences for students     | learning experiences for students    | coherence in knowledge and             |
| coherent learning                  | that develop a coherent progression   | that develop a coherent              | experiences; provides repetitive,      |
| progressions from                  | of knowledge and skills from          | progression of knowledge and         | discrete knowledge that students       |
| kindergarten to grade 12.          | elementary through high school.       | skills in most courses, but may not  | memorize at each grade level; the      |
|                                    |                                       | be fully aligned in each content     | courses often miss essential           |
|                                    | The teacher uses the foundational     | area.                                | knowledge that has to be filled at     |
|                                    | documents to check for coherence      |                                      | later grade-levels.                    |
| Resources:                         | between their own courses and the     |                                      |                                        |
| ILLINOIS LEARNING STANDARDS        | courses before and after to ensure    |                                      |                                        |
| FOR SCIENCE DCI Progression        | the content builds towards            |                                      |                                        |
|                                    | increasing sophistication of student  |                                      |                                        |
| Framework for K-12 Science         | thinking as presented in the Illinois |                                      |                                        |
| Education                          | Learning Standards for Science.       |                                      |                                        |

| New Illinois Learning Standards for Science: District Implementation Components |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component                                                                       | Full Implementation                                                                                                                                                                                                                                                                                                                                                    | Partial Implementation                                                                                                                                                                                                                 | Beginning Implementation                                                                                                                                                                                                                   |
| 1. Equity and Access                                                            | District administration ensures that<br>all K-12 students experience quality<br>science instruction by allocating<br>adequate time and resources to<br>students of all backgrounds and<br>abilities. The district provides and<br>monitors appropriate course<br>sequence and content to support<br>the needs of diverse learners.                                     | District leaders have established a<br>course sequence and content to<br>support diverse learners, but does<br>not monitor its effectiveness, nor<br>support continued refinement with<br>allocation of time and resources.            | The district leaves course content<br>selection to teachers, and plays no<br>part in ensuring equity in<br>instruction beyond teacher<br>evaluation.                                                                                       |
| 2. Management                                                                   | District leadership effectively<br>manages Illinois Learning Standards<br>for Science implementation through<br>explicit planning, timelines and<br>creation of a district wide<br>implementation team that includes<br>teachers. The district assesses<br>course materials, develops course<br>sequences and seeks out quality<br>professional learning for teachers. | District leaders have created an<br>implementation plan with input<br>from teachers. The<br>implementation plan suggests<br>course sequence or course<br>materials, but doesn't include<br>professional development<br>considerations. | District leaders have no<br>implementation plan to transition<br>to Illinois Learning Standards for<br>Science. Teachers are left to<br>implement the standards in their<br>classrooms as they see fit, with no<br>district wide guidance. |

| Component                    | Full Implementation                    | Partial Implementation               | Beginning Implementation             |
|------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|
| 3. Professional Learning for | School leaders understand the shifts   | School leaders are familiar with     | School leaders are not familiar with |
| Teachers                     | of the Illinois Learning Standards for | the Illinois Learning Standards for  | the shifts in the Illinois Learning  |
|                              | Science, and select appropriate        | Science and its shifts, but may lack | Standards for Science. Professional  |
|                              | ongoing professional learning for      | in-depth understanding.              | learning is selected on the          |
|                              | their teachers. Quality professional   | Professional learning is aligned to  | recommendation of outside            |
|                              | learning is aligned to the district    | the district science plan, but may   | agencies, or left to the teacher to  |
|                              | science plan, supports instructional   | not meet the implementation          | seek out. Professional learning is   |
|                              | changes, illustrates Illinois Learning | needs of specific classrooms, and    | not aligned to the district science  |
|                              | Standards for Science in the           | may not address the shifts.          | plan, and may not support the        |
|                              | classroom and provides opportunity     |                                      | specific implementation needs of     |
|                              | for active reflection.                 |                                      | the teachers.                        |
| 4. Instructional Materials   | District leaders recognize the need    | District leaders recognize the need  | District leaders rely on educational |
|                              | for high quality Illinois Learning     | for high quality Illinois Learning   | publishers to choose their           |
|                              | Standards for Science aligned          | Standards for Science aligned        | instructional materials, and may     |
|                              | instructional materials, while         | materials, but rely on teachers to   | adopt them system-wide.              |
|                              | realizing that they are not well       | make those determination in their    | Alignment beyond publisher           |
|                              | supported by current textbooks.        | individual classrooms. Criterion     | recommendation is not evaluated      |
|                              | District leaders use criterion-based   | based tools are recommended to       | using criterion-based tools. The     |
|                              | tools (EQuIP/PEEC) to evaluate         | teachers, but not implemented on     | lack of quality resources is not     |
|                              | curricular materials alongside         | a district wide basis.               | recognized, and teachers are not     |
|                              | teachers, and support educators as     |                                      | supported in efforts to modify their |
|                              | they modify their own materials.       |                                      | own materials.                       |
| 5. Assessments               | The district has implemented           | The district is developing or in the | The district is considering the      |
|                              | common rigorous, aligned, three-       | process of implementing common       | development and implementation       |
|                              | dimensional assessments for each       | rigorous, aligned, three-            | of common rigorous, aligned,         |
|                              | grade level to accurately measure      | dimensional assessments for each     | three-dimensional assessments for    |
|                              | student performance of the Illinois    | grade level to accurately measure    | each grade level to accurately       |
|                              | Learning Standards for Science.        | student performance of the Illinois  | measure student performance of       |
|                              |                                        | Learning Standards for Science.      | the Illinois Learning Standards for  |
|                              |                                        |                                      | Science                              |
|                              |                                        |                                      |                                      |
|                              |                                        |                                      |                                      |

| Component            | Full Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Partial Implementation                                                                                                                                                                                                                                                                                         | Beginning Implementation                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. School Structures | District leaders, in tandem with<br>teachers, develop course scope and<br>sequence based on the Illinois<br>Learning Standards for Science. The<br>scope and sequence aligns to the<br>pathways of the Illinois Learning<br>Standards for Science, and provides<br>developmentally appropriate<br>coursework that builds coherently K-<br>12, engaging all students in all<br>standards.                                                                                 | District leaders develop a scope<br>and sequence, but may or may not<br>involve teachers in the process.<br>Courses may or may not be<br>developmentally appropriate and<br>coherent, and some performance<br>expectations may not be covered.                                                                 | District leaders are not involved in<br>the development of scope and<br>sequence. Teachers incorporate<br>standards into their current course<br>sequence where possible, but the<br>Illinois Learning Standards for<br>Science learning pathways and<br>coherency are not considered.<br>Significant performance<br>expectations are missed.                                                                                   |
| 7. Communication     | District leaders make a concerted<br>effort to communicate the shifts of<br>the Illinois Learning Standards for<br>Science and the plan for transition<br>to both district and community<br>stakeholders. Implementation<br>timelines are developed and shared,<br>and changes to instruction and<br>assessment are communicated<br>clearly and consistently. Avenues for<br>feedback from in-district personnel<br>and community members are<br>created and maintained. | District leaders communicate the<br>shifts of the Illinois Learning<br>Standards for Science and the<br>transition plan to stakeholders, but<br>only passively through methods<br>like newsletters or emails. No<br>avenues for feedback are created<br>or maintained, and communication<br>is not consistent. | District leaders make no specific<br>effort to communicate the shifts of<br>the Illinois Learning Standards for<br>Science or the plan to transition.<br>District communication only occurs<br>within departments rather than<br>across grades/buildings, and may<br>only happen on school<br>improvement days or faculty<br>meetings. Community members<br>are made aware by teachers, or<br>when changes in assessment occur. |

| Component           | Full Implementation                                                                                                                                                                                                                                                                                                                                                                                         | Partial Implementation                                                                                                                                                                                                                                                                                                                   | Beginning Implementation                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. Collaboration    | Districts encourage and facilitate<br>communication and collaboration<br>between educators within their<br>district as well as educators in other<br>districts, and partners with external<br>organizations where appropriate to<br>support implementation. Districts<br>provide time and structure to plan<br>and coordinate instruction and<br>implementation, and seek out input<br>from outside voices. | Districts support collaboration by<br>providing time for departments to<br>meet, but does not provide<br>structure or guidance.<br>Departments are not encouraged<br>to collaborate outside the district.                                                                                                                                | District leaders leave<br>implementation decisions to<br>individual classrooms, and do not<br>promote or facilitate intra or inter-<br>district communication or<br>collaboration. Partnerships with<br>external organizations are not<br>investigated or acted on.                                                                                                                                                    |
| 9. Student Outcomes | District leaders identify and<br>implement effective methods and<br>indicators to measure student<br>performance and three dimensional<br>learning. Student data is used as a<br>source to evaluate Illinois Learning<br>Standards for Science<br>implementation, College and Career<br>Readiness and underserved<br>subgroup performance.                                                                  | Student performance in science is<br>measured district wide and<br>evaluated within departments,<br>though conclusions may not be<br>drawn and applied to the entire<br>district. Three dimensional learning<br>is assessed, however the data is<br>not used to reflect on Illinois<br>Learning Standards for Science<br>implementation. | Student performance in science is<br>not evaluated consistently and<br>systematically across the district.<br>Individual classrooms assess<br>science content knowledge, but not<br>necessarily in a three-dimensional<br>context. No connection to the<br>Illinois Learning Standards for<br>Science implementation is<br>evaluated, and data from<br>assessments is not used to modify<br>district-wide instruction. |

# Foundational Documents for the Implementation Guide:

The Classrooms in Action implementation guide was developed from a wide range of resources, and draws on the expertise of teachers, educators and researchers who have worked to create standards and accompanying documentation from the *Framework for K-12 Science Education*. Of particular use for this document were the *Guide to Implementing NGSS* from the National Research Council and the *NGSS District Implementation Indicators* from Achieve, as well as the NGSS standards themselves. The Classrooms in Action Implementation guide has tried to reflect the strategies, ideas and indicators for implementing the new standards found in these documents, while condensing them and creating a more user friendly rubric format that ties to the Danielson Framework. For a more in depth look at the foundation documentation, follow the links below.

Framework for K-12 Science Education: <u>https://www.nap.edu/catalog/13165/a-framework-for-k-12-science-education-practices-crosscutting-concepts</u>

The Next Generation Science Standards: <u>https://www.nextgenscience.org/</u>

**Conceptual Shifts in NGSS:** <u>https://www.nextgenscience.org/sites/default/files/Appendix%20A%20-</u> %204.11.13%20Conceptual%20Shifts%20in%20the%20Next%20Generation%20Science%20Standards.pdf

Guide to Implementing the Next Generation Science Standards: <u>https://www.nap.edu/catalog/18802/guide-to-implementing-the-next-generation-science-standards</u>

#### **NGSS District Implementation Indicators:**

http://www.nextgenscience.org/sites/default/files/NGSS%20District%20Implementation%20Indicators%20-%20FINAL.pdf

EQuIP Rubric: https://www.nextgenscience.org/sites/default/files/EQuIP%20Rubric%20for%20Science%20v2.pdf

**PEEC Rubric:** <u>https://www.nextgenscience.org/sites/default/files/Draft PEEC-Alignment%20May%202015.pdf</u>

## Full Implementation Components for Teachers-Condensed Guide

A fully implemented classroom has the following characteristics for each component:

- 1. **Primary Resources:** The teacher has read, references when appropriate, and bases their instruction on the Next Generation Science Standards (NGSS) and appendices, A Framework for K-12 Science Education, Evidence Statements and other associated official documentation.
- 2. **Science and Engineering Practices:** Students are using the Scientific and Engineering Practices (SEPs) daily to learn content, solve problems and explain phenomena, and in the process are reflecting the true nature of scientific inquiry.
- 3. **Crosscutting Concepts:** Students regularly use the lens of the Crosscutting Concepts (CCCs) to tie together the content and practices of what they are learning, observing and Investigating in the classroom.
- 4. **Disciplinary Core Ideas:** The teacher uses the Illinois Learning Standards for Science's Disciplinary Core Ideas (DCIs) as a guide for developing instruction in all courses, accommodating DCI progressions for increasing sophistication of student thinking.
- 5. **Performance Expectations:** All students are responsible for showing mastery of all the Performance Expectations (PEs), which form the assessable component of the standards. Students are interacting with the SEPs, DCIs and CCCs of the performance expectations as a sign of three-dimensional learning. PEs are used to guide the assessment of what students should be able to do by the end of that class or grade level. The educator may take the liberty of using more than one unit to fully address a PE as deemed necessary, or address multiple PEs in a unit through "bundling".
- 6. **Students Engage in Explaining Phenomena and Designing Solutions:** The science curriculum focuses on engaging students with meaningful phenomena or problems that can be explained or solved through the application of SEPs, CCCs, and DCIs. The teacher uses anchoring phenomena as a tool to drive student questioning, and investigative phenomena to build evidence for explanation of the anchoring phenomena.
- 7. **Equity:** The teacher ensures that the "all standards for all students" vision of the NGSS is implemented in their classroom and at the forefront of curricular decisions. Course sequence and content are organized with the diversity of student groups in mind, and efforts are made to differentiate instruction to accommodate all students using appropriate researched methods. The teacher uses three-dimensional learning and engaging phenomena creating shared experiences and discussions which promote equity in science education.
- 8. **Three Dimensional Learning:** The teacher provides learning experiences that promote student use of SEPs, CCCs, and DCIs with the goal that students are actively engaged in explaining phenomena or solving problems.

- 9. **Instructional Materials:** The teacher has reviewed alignment of all coursework material to the appropriate DCI progression of the Illinois Learning Standards for Science, consistently evaluates their own materials for alignment and has sought out aligned materials from reputable sources. In addition, the teacher has utilized the PEEC and/or NGSS EQuIP Rubric to evaluate new or current instructional materials for alignment the Illinois Learning Standards for Science.
- 10. **Engineering Design and the Nature of Science:** The science learning environment incorporates learning experiences that include the DCIs of engineering design as well as the SEPs and CCCs of both engineering and the nature of science, with both included in assessments. Both engineering design and the nature of science are taught in an integrated manner with science disciplines.
- 11. **College and Career Readiness:** Lessons and units are designed to develop scientific literacy in students, explicitly connecting science instruction to college and career readiness. The curriculum prepares students for post-secondary education and careers through a combination of rigorous content and application of practices.
- 12. **Connections to Math and ELA:** The curriculum provides science learning experiences for students that explicitly connect to mathematics and ELA learning in meaningful and substantive ways and that provide broad and deep conceptual understanding in all three subject areas.
- 13. **Vertical Articulation:** The science curriculum provides learning experiences for students that develop a coherent progression of knowledge and skills from elementary through high school. The teacher uses the foundational documents to check for coherence between their own courses and the courses before and after to ensure the content builds towards increasing sophistication of student thinking as presented in the Illinois Learning Standards for Science.

## Full Implementation Components for Districts-Condensed Guide

A fully implemented school district has the following characteristics for each component:

- 1. **Equity and Access:** District administration ensures that all K-12 students experience quality science instruction by allocating adequate time and resources to students of all backgrounds and abilities. The district provides and monitors appropriate course sequence and content to support the needs of diverse learners.
- 2. **Management:** District leadership effectively manages Illinois Learning Standards for Science implementation through explicit planning, timelines and creation of a district wide implementation team that includes teachers. The district assesses course materials, develops course sequences and seeks out quality professional learning for teachers.
- 3. **Professional Learning for Teachers:** School leaders understand the shifts of the Illinois Learning Standards for Science, and select appropriate ongoing professional learning for their teachers. Quality professional learning is aligned to the district science plan, supports instructional changes, illustrates Illinois Learning Standards for Science in the classroom and provides opportunity for active reflection.
- 4. **Instructional Materials:** District leaders recognize the need for high quality Illinois Learning Standards for Science aligned instructional materials, while realizing that they are not well supported by current textbooks. District leaders use criterion-based tools (EQuIP/PEEC) to evaluate curricular materials alongside teachers, and support educators as they modify their own materials.
- 5. **Assessments:** The district has implemented common rigorous, aligned, three-dimensional assessments for each grade level to accurately measure student performance of the Illinois Learning Standards for Science.
- 6. **School Structures:** District leaders, in tandem with teachers, develop course scope and sequence based on the Illinois Learning Standards for Science. The scope and sequence aligns to the pathways of the Illinois Learning Standards for Science, and provides developmentally appropriate coursework that builds coherently K-12, engaging all students in all standards.
- 7. **Communication:** District leaders make a concerted effort to communicate the shifts of the Illinois Learning Standards for Science and the plan for transition to both district and community stakeholders. Implementation timelines are developed and shared, and changes to instruction and assessment are communicated clearly and consistently. Avenues for feedback from in-district personnel and community members are created and maintained.
- 8. **Collaboration:** Districts encourage and facilitate communication and collaboration between educators within their district as well as educators in other districts, and partners with external organizations where appropriate to support implementation. Districts provide time and structure to plan and coordinate instruction and implementation, and seek out input from outside voices
- 9. **Student Outcomes:** District leaders identify and implement effective methods and indicators to measure student performance and three dimensional learning. Student data is used as a source to evaluate Illinois Learning Standards for Science implementation, College and Career Readiness and underserved subgroup performance.